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Theta-Point Exponent for Polymer Chains 
on Percolation Fractals 
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We derive a new expression for the Flory exponent describing the average 
radius of gyration of polymer chains at the theta point. For this we make use 
of the appropriate distribution function for the radius of gyration. We start from 
Euclidean lattices and extend the results to percolation fractals, by taking into 
account the basic geometry and the topology of such structures. We show that 
such basic features have a very prominent effect on the Flory exponent of the 
chain polymer on fractals at the theta point. 
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The  mani fes ta t ion  of the exc luded-volume effect on po lymer  chains on 
pe rco la t ion  fractals  in the h igh- tempera tu re  sel f -avoiding-walk ( S A W )  limit  
( T >  0) is still being debated ,  (1 3) pr inc ipa l ly  because the effect seems to be 
very small. (2) Recently,  the ques t ion  of  the effect on the tr icri t ical  size 
exponent  v ~ for po lymers  on perco la t ion  fractals  (at  t empera tu res  a r o u n d  
and  at  T = O )  has been addressed(4):  in this work,  using a s t ra igh t forward  
der iva t ion ,  the au thors  find a somewha t  p r o n o u n c e d  effect on v ~ In this 
pape r  we obta in ,  using a scal ing method ,  a general ized F l o r y  formula  for 
v~ we derive the express ions  for v ~ both  for Eucl idean  spaces and  also for 
pe rco la t ion  fractals. C o m p a r i s o n  of our  results leads us to find clear  
differences between the co r re spond ing  v ~ values. 

Now,  for two-d imens iona l  Eucl idean  spaces v ~ was ob ta ined  by de 
Queiroz(5); his der iva t ion  incorpora te s  the screening effect (6) of  the 
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long-range three-body repulsion term (the two-body terms are zero at the 
theta point). Here we study the 0-point transition by using a phenome- 
nological approach which takes into account the basic geometry of the 
polymer chain. We show that de Queiroz (5~ result can be obtained by an 
independent argument from a Flory-type formula, which makes use of very 
general distribution function forms for the radius of gyration. (7 9) This 
Flory expression is then extended to percolation fractals, essentially 
following the same procedure as for the SAW limit (81 and for branched 
polymers on percolation fractals. (9) In refs. 8 and 9 such extensions have 
been shown to be quite accurate and to agree with the existing results for 
SAW (1~ and branched polymers (11~ on regular and nonrandom fractals. 

We start from the pure lattice case. Let Gx(r ) denote the number of 
configurations of a polymer chain of N monomers at the 0 point, where r 
is the radius of gyration (not the end-to-end distance). We follow the spirit 
of the arguments given by Lhuillier (7~ and Roy and Blumen. (8) Thus, GN(r ) 
must be exceedingly low in two extreme situations: 

(a) When r<N I/J, because then the minimum radius of gyration 
corresponds to that of a collapsed chain. 

(b) For very extended chains, where r>N ~. The Monte Carlo 
calculations (6) for polymer chains at the 0 point indicated that the short- 
range SAW condition remains intact, though the two-body attractions 
cancel the long-range two-body repulsions at T=  0. We take into account 
this fact with the help of our parameter x above. We know that d = 3 is the 
upper critical dimension of polymer chains at the 0 point, i.e., for d =  3 
there does not exist any excluded-volume condition and the chain behaves 
in a mean-field-like way. Therefore, for d = 3 at T = 0 the short-range SAW 
condition can have no effect on polymer chain topology, as the long-range 
three-body term is already irrelevant and thus the chain can be stretched 
to its maximal length N. This means the parameter x equals 1 for d ~> 3. But 
for d <  3 the topology of the chain for large r at T =  0 is affected by the 
short-range SAW condition because there prevails a long-range excluded- 
volume effect and thus the chain at T =  0 for d <  3 cannot be stretched 
more than its average SAW ( T >  0) radius (~NvSAw). The parameter x then 
changes discontinuously from 1 (for d>~ 3) to v saw (for d <  3). This type of 
situation at T =  0 was also considered by de Queiroz (5) in an usual Flory-type 
calculation, by making the long-range three-body repulsive energy screened 
by the short-range SAW condition for d = 2. 

We thus assume that the probability distribution function PN(r), 
defined by PN(r)  -= GN(r)/GN, where G N is the total number of Configura- 
tions, has the form (7-9~ 

r 6 

PN(r )~exp  {--NIC1 ( ~ ) ~  + C2 ( ~ )  ] }  (1) 
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Thus, for small r the free energy of the chain is dominated by a term 
( N / r d )  ~, which may be thought to arise from the three-body long-range 
repulsive energy (as noted, the two-body long-range repulsive energy is 
balanced by the two-body attractive energy at T =  0). For  large r the free 
energy is dominated by the term ( r / N X )  a, which represents the contribution 
of the configurational entropy. In Eq. (1), c~ and 6 are unknown exponents, 
to be determined at a later stage. 

Now, the most probable radius of gyration r 0 of a chain at the 0 point 
is given by the maximum of P N ( r ) .  Thus, with v ~ being the polymer size 
exponent at the 0 point, ( r Z ) ~ N  2v~ and therefore (with x =  1 for d~>3 
and x = v saw for d <  3), 

1 + vSAWK 
v ~ -- for d < 3 

d + K  
(2) 

I + K  
v ~  for d > 3  

3 + K  

Here K is the (positive) exponent ratio, 

K= 6/~ (3) 

It is to be noted that v ~ depends on the ratio K, a typical property of the 
radius-of-gyration distribution function, but not on the individual values of 
g and c~. 

To the best of our knowledge, there does not exist any precise estimate 
for the distribution of the radius of gyration (1) for a chain at the 0 point. 
This prevents us from having any precise values for the exponents ~ and d. 
We are thus restricted to calculating v ~ by using mean-field estimates for c~ 
and 6. Now, since the first term in the exponential factor in Eq. (1) 
represents the three-body repulsive energy, one may expect from a mean- 
field point of view that 

c~=2 

Similarly, the second term in the exponential factor in Eq. (1) represents 
the influence of the configurational entropy; following Lhuillier (7) we have 

6 = 2  

It follows that the mean-field value of K equals 6/c~ = 1. Inserting this value, 
K =  1, and also the Flory mean-field estimate of vSAW= 3 / ( 2 + d )  into 
Eq. (2), we get 

d + 5  
v ~  for d < 3  (4a) 

( d + 2 ) ( d +  1) 

1 
v ~  for d~>3 (4b) 

2 
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Equation (4a) gives a reasonably good estimate for d =  2 (v ~ = 7/12), which 
is only within 2% off the conjectured exact value ~ v ~  Actually, 
v ~  7/12 for d = 2  was also found by de Queiroz (5) using a generalized 
Flory formula. It has to be noticed that the derivation in ref. 5 
incorporated the screening of the three-body long-range repulsive energy 
term: there the short-range SAW condition persists, (6) although the 
long-range two-body repulsive terms are canceled by long-range attractive 
energy terms. On the other hand, in ref. 5 the elastic energy part in the free 
energy of the chain at 0 point was left unchanged. The ensuing free energy 
(in the mean-field limit) has the following structure, in which constant 
coefficients are omitted: 

According to our radius-of-gyration distribution [Eq. (1)], the free energy 
of polymer chains at T =  0 becomes in the mean-field limit 

N 3 r 2 
FN ~ r2d q- N2V saw- 1 (6) 

These two free energy expressions [Eqs. (5) and (6)] are very different; but 
the derivation of the average radius of gyration, being determined by the 
minimum of these two free energies with respect to r [Eqs. (5) and (6)], 
gives the same result for v ~ if for v sAw the Flory mean-field value 
v saw = 3/(2 + d) is used. 

Next we study v ~ for percolation fractals. At the start we mention that 
for percolation fractals in two dimensions a collapse transition can occur 
at finite temperatures. (13) Furthermore, this transition temperature is quite 
different from that for the pure lattice case. Thus, it is very important to 
establish the effect of percolation fractal characteristics on v ~ 

We consider the backbone of the percolation fractal; note that the 
polymer chain is restricted to the backbone, otherwise it would be trapped 
in the dangling ends. The chain, in the SAW limit ( T >  0), is at its upper 
critical dimension if ds~>4 (see, e.g., ref. 8), where d~ is the fracton (or 
spectral) dimension of the backbone of the percolation fractal. (14) Using 
similar reasoning, we can say that polymer chains at the 0 point reach their 
upper critical dimension on percolation fractals if ds ~/> 3. 

Let us again determine the distribution P'u(r)  of the radius of 
gyration: we use the prime to distinguish the expression from the pure 
lattice case. Following ref. 8 and the previous discussion for chains on pure 
lattices, we observe that P'u(r)  must decrease strongly (a) for r <  N 1/dB, 
where dB is the fractal dimension of the backbone,/15) and (b) for r > N y. 
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. SAW where " SAW is the polymer size exponent (in the For dff <3,  y = v ~  , v~ 
SAW limit, T >  0) on the percolation fractal; and y =  1/dmi n for dff~> 3, 
where dm~, is the fractal dimension of the shortest (chemical) path on the 
percolation fractal. (14) 

Thus we have 

N 6, 

Maximizing with respect to r, we obtain 

1 + vSAWK' 
pc for ds B < 3 0 

Vp,-  dB + K '  
(8) 

l d e +  ' e 
K d L for ds B/> 3 

VPc de d e + K '  

where v ~ is the polymer size exponent at T =  0 on the percolation fractal; 
Pc 

in Eq. (8), K'  (=6 ' /e ' )  is a (positive) exponent ratio and d~ (=dJdmi~)  is 
the spreading (or connectivity) dimension of the backbone of the percola- 
tion fractal. (14) 

Next we calculate the mean-field estimate of v ~ The mean-field values 
Pc" 

for 6' and ~' are, respectively, 3 ' =  2 d e / ( 2 d ~ - d f f )  (ref. 8) and ~ '=  2 (ref. 7); 
from this mean-field estimate K' turns out to be K ' = d e / ( 2 d ~ - d f f ) .  
Taking from Roy and Blumen (8) the value of vSAWpc =(4d~--dse) /  
de(2 + 2dL e -- dff), we have from Eq. (8) 

0 1 2 + (2dL ~ -- dff)(3 + 2dL B -- ds B) 
Vpc=d-~B(2+2dLB dsB)(l+2dr~_dff  ) for d f f < 3  (9a) 

1 
0 =  for ds et>3 (9b) 

vet d~v e 

where dw, e ( = 2 d J d f f )  is the fractal dimension of random walks on the 
backbone of percolation fractals.(~5~ 

Dhar and Vannimenus ~16~ solved exactly the 0 point chain problem on 
Sierpinski gaskets in 3 dimensions and they found v ~ =0.529...; our 

Pc 

Eq. (9a) yields v~ only 6.7% off the exact value. Thus, using 
Eq. (9a), we predict that one should have v ~ ~0.678 and v ~ ~0.611 for 

Pc Pc' 

percolation fractals in d = 2 and d = 3. By comparison, we see that these v ~ 
Pc 

values are very different from the corresponding values for the pure lattices, 
where v ~ = 4/7 and v ~ = 1/2, respectively. Thus, we infer that the percolation 
fractal characteristics should influence strongly the behavior of chain 
polymers at T =  0. Moreover, from Eq. (9a) we see that v ~ = 1/2 on d =  6 

Pc 
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percolation fractals, which supports  the conjecture of Roy and Blumen (8~ 
that there will be no finite-temperature collapse transit ion (i.e., 0 = 0 )  of 
polymer chains on d =  6 percolation fractals, a fact which stems from the 
topology of the fractal structure itself. 

In conclusion, we have shown that, using the radius-of-gyration 
distribution function, one obtains a good Flory approximant  for polymer  
chains at T - - 0  in Euclidean spaces. We have extended this method to 
percolation fractals and we found that  the geometry and topology of 
percolation fractals strongly influence the size exponent  of polymer chains 
at T =  0. It would be interesting to compare  our  formula (9a) with accurate 
Monte  Carlo simulations or  exact enumerat ion calculations. 
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